Skip to contents

Given a multivariate normal (MVN) distribution with covariance matrix \(\Sigma\), this function finds a sparse precision matrix (inverse covariance) \(Q\) based on the Vecchia approximation (Vecchia 1988, Katzfuss and Guinness 2021), where \(N(\mu, Q^{-1})\) is the sparse MVN that approximates the original MVN \(N(\mu, \Sigma)\). The algorithm is based on the pseudocode 2 of Finley et al. (2019). Nearest neighbor finding algorithm is based on GpGp::find_ordered_nn.

Usage

vecchia_cov(
  Sigma,
  coords,
  n.neighbors,
  ord = NULL,
  KLdiv = FALSE,
  lonlat = FALSE
)

Arguments

Sigma

matrix<num>, n by n covariance matrix

coords

matrix<num>, n by 2 coordinate matrix for nearest neighborhood search

n.neighbors

integer, the number of nearest neighbors (k) to determine conditioning set of Vecchia approximation

ord

vector<int>, length n vector, ordering of data. If NULL, ordering based on the first coordinate will be used.

KLdiv

logical, If TRUE, return KL divergence \(D_{KL}(p || \tilde{p})\) where \(p\) is multivariate normal with original covariance matrix and \(\tilde{p}\) is the approximated multivariate normal with sparse precision matrix.

lonlat

logical, (default FALSE) If TRUE, the coordinates are in longitude and latitude. If FALSE, the coordinates are in Euclidean space.

Value

list of the following:

Q

n by n sparse precision matrix in Matrix format

ord

ordering used for Vecchia approximation

cputime

time taken to run Vecchia approximation

KLdiv

(if KLdiv = TRUE) KL divergence \(D_{KL}(p || \tilde{p})\) where \(p\) is the multivariate normal with original covariance matrix and \(\tilde{p}\) is the approximated multivariate normal with a sparse precision matrix.

Linv

n by n sparse reverse Cholesky factor of Q, a lower triangular matrix such that Q = t(Linv)%*%Linv (before ordering changes). In other words, Linv = chol(Qn:1,n:1)n:1,n:1 (before ordering changes).

References

Vecchia, A. V. (1988). Estimation and model identification for continuous spatial processes. Journal of the Royal Statistical Society Series B: Statistical Methodology, 50(2), 297-312.

Katzfuss, M., & Guinness, J. (2021). A General Framework for Vecchia Approximations of Gaussian Processes. Statistical Science, 36(1).

Finley, A. O., Datta, A., Cook, B. D., Morton, D. C., Andersen, H. E., & Banerjee, S. (2019). Efficient algorithms for Bayesian nearest neighbor Gaussian processes. Journal of Computational and Graphical Statistics, 28(2), 401-414.

Examples


library(bspme)
n = 1000
coords = cbind(runif(n), runif(n))
library(GpGp)
ord <- GpGp::order_maxmin(coords) # from GpGp
Sigma = fields::Exp.cov(coords, aRange = 1)
fit5 = vecchia_cov(Sigma, coords, n.neighbors = 5, ord = ord, KLdiv = TRUE)
fit5$KLdiv
#> [1] 15.75398
fit10 = vecchia_cov(Sigma, coords, n.neighbors = 10, ord = ord, KLdiv = TRUE)
fit10$KLdiv
#> [1] 3.531344

# Check Linv
Q = fit5$Q
Q_reordered = Q[ord,ord]
all.equal(fit5$Linv, chol(Q_reordered[n:1,n:1])[n:1,n:1])
#> [1] TRUE
all.equal(Q_reordered, t(fit5$Linv) %*% fit5$Linv)
#> [1] TRUE