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Statistical models form the backbone of scientific reasoning, enabling new discoveries and decision-
making across a wide range of disciplines, from assessing the health risks of air pollution to an-
alyzing biodiversity loss in ecology. Behind these statistical models, however, are methodological
frameworks that are often built on idealized assumptions and do not adapt well to large-scale,
high-dimensional datasets. There is an ongoing need to enhance the robustness, interpretability,
and scalability of statistical and machine learning methods for analyzing complex, high-dimensional
data, which motivates the core question of my research:

“How can we develop statistical and machine learning methods that are robust to modeling assumptions,

informative for scientific decision-making, and scalable to complex, high-dimensional data?”

Here, I outline my research in three parts: theoretical and methodological developments, application-
driven works addressing unique scientific questions across domains, and ongoing and future direc-
tions that build on these foundations. 1

Theory and methods: Scalable, robust, and interpretable methods

Scalable and robust statistical models. All models are wrong in the sense that assumptions are
never exactly met, but some models are particularly vulnerable to such deviations. Beta regression
for modeling continuous proportional data Y ∈ [0, 1] (e.g. rates, indices) is one such example, where
inference and prediction are highly sensitive to outliers and model misspecification, and scalability
to hierarchical model settings is limited.

In [1], I developed a new class of generalized linear models for continuous proportional
data that addresses these limitations. The proposed models exhibit strong robustness properties,
including consistency of MLE under potential model misspecification and resilience to outliers. A
key innovation is a novel data augmentation strategy that transforms the model into a condition-
ally Gaussian form, enabling highly efficient computation via expectation-maximization (EM) and
Markov chain Monte Carlo (MCMC) algorithms with theoretical guarantees. This framework scales
naturally to large, spatially structured datasets, settings where beta regression typically fails. This
work, also implemented as the R package cobin at CRAN [2], received the Best Long Talk Award
at the 2025 Bayesian Young Statisticians Meeting (ISBA Junior Section) and is currently under
revision at the Journal of the American Statistical Association (Theory and Methods). Also, an
ongoing line of work [3] extends this focus on scalability and robustness to the problem of prob-
abilistic graph clustering. In particular, it aims to relax the strong generative assumptions
of stochastic block models for clustering, while maintaining robustness to outliers and enabling
efficient computation based on random spanning tree models.

Scalable and interpretable statistical models. Nonparametric methods are widely used to
avoid restrictive parametric assumptions, but their flexibility often comes at the cost of inter-
pretability, sensitivity to hyperparameter choices, and computational intractability for complex
settings. A key challenge is to preserve the flexibility of nonparametric approaches while improving
interpretability and ensuring computational efficiency.

Focusing on a density regression problem, where the conditional density of a response is mod-
eled flexibly as a function of covariates, I developed a dependent Bayesian nonparametric model
for density regression [4], recently accepted for publication in Bayesian Analysis. The proposed
model enables scalable density regression with uncertainty quantification, while also mitigating
sensitivity to hyperparameter choices and enhancing model interpretability.

Also, when a statistical model contains both parametric and nonparametric components, such as
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mixed models with spatial random effects, careful specification of the nonparametric component can
enhance the interpretability of the parametric part of the model. In [5], I developed a spatial logistic
regression model that enables both population-averaged and subject-specific odds ratio
interpretations of the regression coefficients, achieved by adopting a new class of non-Gaussian
spatial processes. This is in contrast to traditional Gaussian process-based methods, which only
provide subject-specific interpretations. The work also brings scalable computation strategies and
is currently under revision at Statistics in Medicine.

Statistical machine learning methods with solid theoretical foundations. My research in
statistical machine learning focuses on developing methods and algorithms that are theoretically
grounded and broadly applicable across a wide range of tasks. One of the central goal is to
improve interpretability alongside statistical rigor, ensuring that the resulting tools remain useful
for domain-specific decision making.

In the context of probabilistic clustering, a widely used approach in various domains where the
number of clusters is unknown, a common implicit assumption is the “rich-get-richer” property,
which tends to favor imbalanced cluster sizes. Although often accepted by default, this assumption
can be undesirable in many applications where more balanced clustering is preferred, yet it had
remained unclear why such an assumption appears necessary and what principled alternatives
might exist. In [6], presented and published at the International Conference on Machine Learning
(ICML), I introduced a theoretical framework that identifies implicit assumptions driving
the “rich-get-richer” behavior in probabilistic clustering. I also proposed a general strategy
for designing methods with tunable balancedness properties, allowing the clustering behavior
to better match the needs of different applications.

Bayesian model selection is another area where I have contributed to the development of scalable and
theoretically grounded machine learning algorithms. Despite its foundational role, high-dimensional
Bayesian model selection problems remains computationally challenging, such as variable selection
and structure learning, where the model space grows exponentially with the number of variables.
While MCMC methods are popular, their inherently sequential nature limits scalability.

In [7], using the multiple-try Metropolis with N parallel trials and adopting a certain family of
proposal kernels, we proved that the mixing time bound can be improved by a factor of
N in the context of model selection problems. In other words, the number of MCMC iterations
required for convergence is reduced by a factor of N , overcoming the fundamental limitations
of MCMC’s inherently sequential nature by harnessing parallel computational tools
and offering significant practical gains. This work was presented at and published in Advances in
Neural Information Processing Systems (NeurIPS), where it was selected for an oral presentation
(top 1.9% of all submissions).

Applications: Capturing complex spatial dependence structures

The growing availability of geocoded data, with advances in geographic information systems and
remote sensing technologies, has made spatial and spatiotemporal analysis increasingly accessible,
leading to important findings across scientific disciplines. I have developed novel statistical methods
to address the unique challenges involved in analyzing complex spatial data across a broad range
of applications.

Air pollution epidemiology . Exposure to air pollution is linked to approximately 7 million
premature deaths annually, according to the World Health Organization. Ambient air pollutants
(e.g. speciated PM2.5, volatile organic compounds) are typically measured at a limited number
of monitoring stations, posing several statistical challenges due to sparse exposure data, complex
spatial dependence structures, and high correlations between pollutants arising from a common
source (e.g., vehicle exhaust). When analyzing the health effects of environmental exposures, one
of the key challenges is accounting for measurement error caused by spatial/temporal misalignment
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between exposure and health outcome data, as well as incorporating the uncertainty in the expo-
sure estimates into the health data model. Previous studies have shown that failure to properly
address exposure measurement error can lead to biased health effect estimates as well as incorrect
uncertainty quantification, but existing methods often scale poorly or ignore spatial dependence.

Fig.3 of [8]: Volatile organic compound mon-
itoring stations (red) and residential loca-
tions (green) in Houston metropolitan area.

In [8], we proposed an efficient uncertainty
propagation method to account for exposure mea-
surement error that scales well to massive health
data settings while maintaining minimal bias and
reliable coverage probabilities. Applying this ap-
proach, we identified associations between source-
specific/pollutant-specific exposures and reduced
birth weights with better quantification of uncer-
tainty in exposure estimates. This work is published
at Biostatistics and was recognized with the Early
Career Award from the American Statistical Associ-
ation’s Section on Statistics in Epidemiology.

More recently, motivated by the abundance of traf-
fic and land-use data in contrast to spatial sparsity
of monitoring stations, we have been developing a

covariate-informed source apportionment model to better quantify the apportionment of air
pollutants to their sources, which not only explains the association between traffic covariates
and source-specific exposures, but also better characterizes small-scale spatial variation in exposure.

Fig.5 of [9]: Estimated
anomaly signal on road
network of Manhattan.

Network science and medical imaging. Network science is a rapidly
growing field that provides a flexible framework for capturing structure
and relationships in complex datasets through graphs. For example, traf-
fic patterns can be encoded in spatial road networks, while brain activity
measured by electroencephalography (EEG) or functional MRI (fMRI)
can be represented as networks, where nodes correspond to electrodes
or brain voxels. Analyzing such data requires innovative statistical ap-
proaches that account for their unique, nontrivial geometries.
In [9], we developed a probabilistic clustering and variable selec-
tion method for graph-structured data based on a Bayesian hier-
archical model involving random spanning trees, applicable to a variety
of settings while providing interpretable results through clustering. We
focused on the problem of anomaly detection in road networks caused by
an event, where the proposed method identified a previously undetected
affected area along with uncertainty quantification. This work was pre-
sented at and published in NeurIPS. The proposed method is also appli-
cable to scalar-on-image regression tasks, which are commonly
encountered in medical imaging analysis. Recent studies involv-
ing EEG and fMRI data have extensively used the proposed method as a benchmark [10] [11],
highlighting its fundamental role in advancing statistical modeling for biomedical imaging studies.

Community ecology. Identifying natural and human-driven factors of biodiversity loss is a central
goal in community ecology, where spatial statistics plays a key role by accounting for spatial
correlation in geographically indexed data, such as species diversity of aquatic macroinvertebrates
across U.S. lakes. Ecological indices are typically bounded (e.g., between 0 and 1), motivating
the use of appropriate regression models. We applied our proposed new class of generalized linear
models [1] to a large-scale spatial dataset and successfully identified both natural and anthropogenic
drivers of lake biodiversity, providing more robust and reliable results than beta regression.
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Ongoing works and future directions

While my research interests span a broad range of methodological and applied areas, I plan to
focus on two directions over the next few years: developing probabilistic machine learning methods
for scalable probabilistic learning and prediction, and building novel statistical models for complex
data arising in neuroscience and molecular biology.

Amortized inference and in-context scalable Bayesian prediction. Large-scale pretrained
models, often referred to as foundation models, are becoming increasingly popular in modern ma-
chine learning. A particularly promising recent development is prior-data fitted networks [12,
13], which introduces a new paradigm for Bayesian prediction. These models are pretrained on
synthetic data generated from a wide variety of plausible data-generating mechanisms, including
different statistical models, noise levels, and parameter configurations, and then perform probabilis-
tic prediction via a single forward pass in a few-shot setting, without updating model parame-
ters. This form of amortized inference shifts the computational burden to the pretraining stage,
enabling fast and scalable prediction. It significantly broadens the scope of probabilistic model-
ing, especially in settings where specifying an explicit statistical model or evaluating likelihoods is
infeasible or computationally intractable. By reframing statistical model design as a problem of
generating diverse, plausible synthetic training data, this approach offers a new perspective on how
to perform flexible and scalable Bayesian prediction.

One area where I am actively exploring this idea is probabilistic sound source localization, as
part of a collaborative effort with Finnish ecologists to develop an autonomous bird biodiver-
sity monitoring system. By generating synthetic training data from a range of plausible sound
propagation models and microphone array configurations, we develop models that perform localiza-
tion with uncertainty quantification from synchronized bird vocalization recordings, enabling fast,
automated inference of bird locations at scale.

Brain structural and functional connectomics. Understanding how the brain is organized
and connected, both structurally and functionally, provides critical insight into human cognition,
behavior, and disease. Neuroimaging studies often involve high-dimensional structured data, such
as diffusion MRI or fMRI, where modeling connectivity across brain regions requires accounting for
complex spatial dependence structures. One of my ongoing collaborative projects with epidemiol-
ogists at the University of North Carolina at Chapel Hill examines how early life exposure to
phthalates is associated with brain development. Brain voxels are parcellated into distinct
regions of interest, and a key statistical challenge lies in inferring associations between chemical
exposures and developmental outcomes while accounting for dependence structure across
brain regions, in a way that yields results that are both robust and interpretable.

Spatial transcriptomics and proteomics. Spatial transcriptomics and spatial proteomics have
opened up a new area of research by providing molecular expression from tissue along with spatial
information, offering a new approach to uncover the relationships between structural organization
and function in biological systems. However, such spatial omics data come with high dimension-
ality and strong spatial autocorrelation, making it challenging to perform interpretable and
reliable statistical inference. Building on my research in spatial statistics and probabilistic cluster-
ing, I plan to develop new statistical methodologies for analyzing spatial omics data in collaboration
with domain scientists. One particularly promising direction is spatial clustering of transcrip-
tomic and proteomic profiles, which can reveal spatially contiguous molecular patterns that
are clinically meaningful and interpretable.
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